Artificial Neural Network and Cancer Detection
نویسندگان
چکیده
In medicine at present, neural networks are a ‘hot’ research area, particularly in cardiology, radiology, urology, oncology etc. In the area of computer science, this new technology has been accepted. The purpose of a neural network is to map an input into a desired output. Combining neurons into layers permits artificial neural networks to solve highly complex classification problems. The various types of neural networks are explained and established. In medicine, applications of neural networks like ANNs are described, and a detailed historical background is provided. This paper focuses on the role of neural network in medical imaging.
منابع مشابه
Face Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملDiagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملDetection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...
متن کاملA review of neural network detection methods for breast cancer: review article
Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...
متن کاملComparison between artificial neural network and radiobiological modeling for prediction of thyroid gland complications of after radiotherapy
Introduction: Hypothyroidism is one of the frequent side effects of radiotherapy of head and neck cancers, breast cancer, and Hodgkin's lymphoma. It is recommended to estimate the normal tissue complication probability of thyroid gland using radiobiological modeling during treatment planning. Moreover, the use of artificial neural network is also proposed as a new method for t...
متن کامل